
J .  Fluid Mech. (1980), vat. 96, part 1, pp .  207-222 

Printed in Great Britain 
207 

Dynamo action associated with random waves 
in a rotating stratified fluid 

By M .  WALDER, 
Lehrstuhl fur Theoretische Astrophysik, Universitiit Tubingen, West Germany 

W. DEINZER 
Universitilts-Sternwarte, Gottingen, West Germany 

A N D  M. ST‘IX 
Kiepenheuer-Institut fur Sonnenphysik, Freiburg, West Germany 

(Received 18 September 1978 and in revised form 15 May 1979) 

A random superposition of waves in a rotating, stratified, electrically conducting fluid 
leads to dynamo action in the sense that it yields a mean electric field having a com- 
ponent parallel to the mean magnetic field ( ‘a-effect ’). Using Fourier analysis methods, 
we derive an explicit expression for the mean electric field. The a-effect has tensor 
form. We obtain a finite a-tensor even in a case of vanishing mean helicity. The result 
is discussed in the context of the solar turbulent dynamo. 

1. Introduction 
The subject of mean field electrodynamics was initiated by Steenbeck, Krause & 

Radler (1966). For an electrically conducting fluid, which is in random motion, u, 
and is permeated by an induced fluctuating magnetic field, h, they found that the 
mean electric field, d = u x h, has a component parallel or anti-parallel to the mean 
magnetic field, K, provided the motion is sufficiently anisotropic. It is well known 
that such an effect (‘a-effect’) causes a dynamo instability: an initially small mean 
field will grow exponentially in time (Parker 1955). 

Moffatt (1970a, b, 1972, 1974, 1978) applied Fourier analysis methods to the 
problem and thus was able to treat cases where u consists of a superposition of random 
waves. Here the time dependence of each wave is given by a dispersion relation and 
the space and time correlations of the velocity components are therefore no longer 
separable. However, in order to obtain a non-vanishing mean electric field, Moffatt 
(1970b, 1972) made the assumption that there is a preferred direction of wave pro- 
pagation. In  the present paper we shall drop this assumption and instead investigate 
the dynamo action of waves in a rotating strati$ed medium. We thus have, in addition 
to rotation, a natural means to introduce anisotropy into the random velocity field. 
This approach will also remove the particular behaviour of Moffatt’s result in the 
limit of slow rotation, where he obtained a finite a-effect, while a result proportional 
to the rate of rotation would seem more plausible and would also be in agreement with 
the earlier results of Steenbeck et al. (1966) and Krause (1968) who also investigated 
this limit. 

- 
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In  Q 2 we shall consider the linearized equations governing the propagation of waves 
in an isothermal atmosphere under the influence of rotation. Since rotation wil l  be 
considered only as a weak influence, the emphasis will be on acoustic and internal 
gravity waves rather than on inertial waves as in Moffatt's work. An expression for 
the spectrum tensor of these waves will be derived in $3,  and in $ 4  we shall discuss 
the helicity, u . curl u of our random superposition of wave modes. We shall see that 
a velocity field with zero mean helicity can still provide a mean electric field leading 
to dynamo action. After a discussion of the induced magnetic field in $ 6 we derive, 
in $ 6, the tensor ad$ which relates 8 to the mean field. Results for the limiting cases 
of very small and very large wavelength (compared to the scale height of density 
stratification) will be communicated in $7, both in the limits of small and large 
electrical conductivity. Finally, in $ 8, we discuss an illustrative two-dimensional 
example of a large-scale (mean) magnetic field excited by the dynamo mechanism 
studied in the preceding sections. 

2. Waves in a rotating stratified atmosphere 

tuating parts, viz. 
We divide the Eulerian density and pressure variables into their average and fluc- 

Po = F+P,  (1) 

Po = F+P* (2) 

We adopt an equilibrium state with no motion, i.e. ii = 0. The linearized equations 
of momentum, mass and energy conservation, in a rotating frame of reference, are 
then 

p g =  -vp+pg-2p(Q'xu) ,  

aP -=  -V.@U),  
at 

%+u.vji at = c2(g+u.vp).  

(3) 

(4) 

We consider a plane parallel geometry (approximately valid for a thin spherical 
shell), where g = -92 is the acceleration of gravity; Q' is the vector of rotation and 
c = (j iy/p)i  is the Laplacian velocity of sound. In  (3) we have neglected the centrifugal 
force, which is reasonable if the rotation is slow in the sense R!X2/g < 1, which ia 
satisfied for most stars. The Coriolis force is however retained; a consistency condition 
is therefore p/p < 2uIRR'. Since we consider the growth of infinitesimal magnetic 
fields we have neglected the Lorentz force, i.e. our study is kinematic. Equation (5 )  
describes the adiabatic case; the ratio of specific heats, y, will be considered as a 
constant. We shall also assume that the unperturbed stratification is isothermal, 80 

that 
(6) p ,  ji a exp ( - z / W ,  

where z is the vertical co-ordinate and the scale height, H ,  is a constant: 

H = c2/3/g. (7) 
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We now introduce the 'field variables' (Eckart 1960, p. 55)  

u = U(j%)*, P = p(jJc)", s = ($2 - c2p) (y  - l ) d  ( p C ) - + .  (8) 

The variable S differs from Eckart's Q by a factor N', the Brunt-VLisLlii frequency: 

" = (y -  l ) + g / c .  ( 9 )  

Equations (3)-(5) are thus reduced to a system with constant coefficients, and the 
solutions have exponential form : 

(10) (U, P, S) = (0, P,  #) exp [i(k' . x - o't ) ] .  

We use normalized frequencies, o and N ,  and wave and rotation vectors, k and 51, 
defined by 

O' = cw/2H, N' = c N / 2 H ,  k = k/2H, sz' = cS2/4H, ( 1 1 )  

(12) 

US= - i N O . S ,  (13)  

UP = O.k+girU.2,  (14) 

and obtain the algebraic system 

wfr  = kP - +ir.f% + iN& - i51 x 0, 

where I' = 2 ( 2 - y ) / y .  This system is self-adjoint (because of the neglect of all dissi- 
pative terms in our original equations), and therefore all frequencies w are real. One 
of them is zero and belongs to a steady solution which is horizontally in geostrophic, 
and vertically in hydrostatic, equilibrium; here we shall not consider this solution 
further. The four remaining frequencies are obtained from the following dispersion 
relation: 

D = 04- ( I  + k2+ f22) d+ rk.  (51 x 2) o + (k. 51)2+ (a. 2)2 + N2(k x 2)2 = 0. (15)  

Equation (15)  is the condition that the system (12)-( 14) has non-trivial solutions. 
Since 

(k. a)2+ (S2.5)2+N2(k x 2 0, 

each of the four frequency branches has a well-defined sign. In the case of no rotation, 
we have the two acoustic wave branches 

= zk {&( 1 + k2)  + [&( 1 + k2)2 - N2(k x 2)2]*)*, 

and the two internal gravity wave branches 

w , ~ ~  = _+ {i( 1 + k2) - [a( 1 + k2)2 - N2(k x a)']*)*. (17) 

For part of the subsequent discussion it is convenient to introduce polar co-ordi- 
nates 8, g5 in the k space, with 2 as axis; if 8, is the angle between 5 and the axis of 
rotation, we define the z and y directions such that 

GI = Q(O, -sin o,, cos e,j 
k = k(sin 8 cos q5, sin 8 sin $, cos 8). 

(18) 

and (191 

(We may imagine that the system of rectangular co-ordinates used previously sits 
on a sphere, with the origin at co-latitude 8,, and the x and y directions pointing 
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FIGURE 1. Dispersion relation w ( k )  for R = 6 and a horizontal axis of rotation; 0 is the in. 
dination of the wave vector from the vertical. Notice the asymmetry between positive and 
negative frequencies, which does not occur for R = 0. Parameters are y = %, so that N a  = 0-96, 
and Oo = in, fi = 0. 

towards west and south respectively. Thus 0 is the angle between k and the local verti- 
cal, and @ is the angle between west and the projection of k onto the local horizontal 
plane.) 

The symmetry of the two acoustic and internal gravity wave frequencies with 
respect to w = 0 is destroyed when s1 + 0. This is illustrated in figure 1 which shows 
the four branches of w(k), evaluated numerically for 0, = &r, Q = 4, @ = 0, and 
various values of 8; the values of B0 and 9 were chosen such that the asymmetry 
introduced by rotation is most clearly exhibited. The rotational effect is also illua- 
trated in figures 2 and 3 where the surfaces w = constant in the k space are shown. 
These surfaces are ellipsoids for the acoustic modes, and hyperboloids of one sheet 
for the internal gravity modes. Their equations are obtained from the dispersion 
relationship 

k : ( P  - w2) + kE(N2 + nz, - w2) + ki( a; - w2) + 2k, kz ay nz 
+r lcXn ,w+w4- ( (1+n2)w2+n~=o .  (20) 

k,, = - + r n , W / ( ~ 2 - @ 2 ) ,  (21) 

The centre of these surfaces is shifted along the k, axis to 

and the whole surfaces are rotated about the k, axis by an angle 8, where 
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FIGURE 2. Surfaces o = constant for acoustic modes, projected to the plane k, = 0 (top) and 
to the plane k, = 0 (bottom). Parameters are y = -:, and a, = -av = 4, so that E % -6.5"; 
the frequencies are w = 1.1, 1.5, 2.0, 2.5 and 3-0, increasing outwards. 

Inspection of the dispersion relation (15) shows that the term responsible for the 
asymmetry between the positive and negative branches of w is proportional to 
k .  (Q x 2). This asymmetry therefore vanishes for waves propagating in a meridional 
direction, where k, Q and 2 are co-planar. We shall give the rotational modification 
of the frequencies (16) and (17)  explicitly in 8 7 for a number of limiting cases. 

3. The spectrum tensor 
The spectrum tensor associated with the random field U is defined by 

cDi,(k) 6(k - 1) = O?(k) q.(l), (23) 

where 0 is given by (10). Since the frequencies w of our waves are determined by the 
dispersion relation as functions of k,  we do not consider k and w as independent 
variables; We may consider the overbar as indicating an average over time, or an 
ensemble average. 

We intend to determine cDdj from our basic equations. To this end, we eliminate 
P and f l  from (12)-( 14) and obtain, in matrix notation, 

where 
MiiOi = 0, (24) 

Mij = ki ki + &i &i - wz8i, + iEi<JfrI'(k x + w S ~ , ] .  ( 2 5 )  
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FIGURE 3. Surfaces w = constant for internal gravity modes. The frequencies are w = 0.46, 
0.7 and 0.9, increasing with distance from the k, axis; otherwise a s  figure 2. 

This matrix is Hermitian; we therefore have 

M;U? = M,,O~ = 0. (26) 

Now the matrix Aij consisting of the co-factors of Mij has precisely the properties 
required for our spectrum tensor: for any fixed i, Aij is a solution to (24), for any 
fixed j it  is a solution to (26), and Aij is Hermitian. Therefore the spectrum tensor 
must be proportional to Aij; the coefficient, S, may however depend on k (or on k, 
8 and q5): 

(27) 
From (25) we obtain A,,., so that 

Qij = X(k,  8, q5) Aij. 

Qij = S { W ~ ( W ~ -  1 - k2)  Sij + w2(2i2j+ kikj - Qifzj) +N2(k x S) i  (k x S ) j  

- &I'w[fz,(k x 2) j + fz j(k x S),] - iosij,[iI'w(k x S)8 + d f z ,  128) 
- (a. 2) 2s - (a. k) kJ}. 

The energy density spectrum E(k') is defined by 
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[Oi, and E have dimensions; the dimensional wavenumber k’ must therefore be 
used in (29)]. We may express the undetermined function S(k) in terms of the energy 
density spectrum if we assume that the trace aii does not depend on 8 and q5, i.e. 
that kinetic energy is generated isotropically. 

Then we have 
E(k’)  = 2dd2@,,,, (30) 

and, by ( 2 8 ) J  

S =E(k’)  (277kf2)-1[304-~2(!2+ 2 + 2k2) +W(k x 2)2+ rwk. (a x 2)I-l. (31) 

4. The helicity 
Steenbeck et al. (1966) and Krause (1968) found an a-effect, i.e. a non-vanishing 

component of u x h in the direction of h, for velocity fields u lacking reflection sym- 
metry. For such fields the helicity 

2= u.curlu (32) 

does not vanish. We now evaluate the helicity for a random superposition of waves 
in a rotating stratified fluid. Using (8) and (10) our velocity field is 

u = @)-* Re1 O(k’) exp i(k‘ . x - w‘t) dk’, (33) 

where the integral is over the entire k’ space and, in addition, for each k’, the con- 
tributions from the four branches of w(k’) must be added together. As in the case of 
no stratification, the helicity can be computed according to 

(cf. Moffatt 1978, p. 160), since the term proportional to Vj3 does not contribute to 
the integral. Consistently with its definition (32) .V is real as there are contributions 
only from the anti-symmetric part of the spectrum tensor. Inserting (28) we obtain 

# = 1 O0 f” 1 S( k) [(a. 2) (2. k) + (a. k) (k2 - w2)] uk2 sin 8 d8 dq5 dk. (36) 
PC(2W4 0 -7r  0 

With the special form of the function S given by (31), and with the help of (18) and 
(19) we can write 

* E(k) [( 1 - w2 + k2) cos 8,cos 8 + (w2 - k2)  sin do sin 8 sin 91 kw sin 8 d8 dq5 dk 
2u4 - ( 1 + k2)  w2 - R2 cos2 8, - Ic2R2(cos 8, cos 8 - sin 8, sin B sin q5)2 

(36) 

Here we once more made use of the dispersion relation in order to simplify the deno- 
minator. Now we readily see that 2P must be zero as the integrand of (36) changes 
its sign when we go from the direction (8, q%) to the direction (?T - 8, - 4); the dispersion 
relation, and therefore w, is invariant under this transformation. Since the intervals 
of integration are symmetric with respect to 8 = in and q5 = 0, the contributions 
from the two hemispheres in k space cancel each other. This is separately true for all 
four frequency branches. 
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Of course, the result of zero mean helicity depends on the assumption of isotropic 
energy generation made in the preceding section. If the two waves propagating in 
the (8,$) and in the ( 7 ~  - 8, - $) directions have equal amplitudes, their helicities, 
which have opposite sign, cancel. 

5. The induced field fluctuations 
We use the induction equation for the magnetic field fluctuation, h, in its ‘first- 

order smoothed’ version, and with zero mean motion, 0 = 0. Thus 

ah/at = curl (u x h) + AAh, (37) 

where A is the electromagnetic diffusivity. The first-order smoothing approximation, 
where products of fluctuating velocities and fields are neglected, is valid if the velocity 
amplitude u is small either compared to the diffusive velocity kA or compared to the 
phase velocity w / k  of the wave (e.g. Moffatt 1978, p. 156). The former possibility is 
the small magnetic Reynolds number limit, which is not applicable to most astro- 
physical situations. The latter case is independent of the magnetic Reynolds number, 
but it must be kept in mind that the waves must have small amplitudes; in particular 
in the limit w + 0 this poses a problem. 

We write the velocity field, u, in the form 

u = Re(fiexpi(K.x-w’t)), (38) 

where K is now a complex wave vector, 

K = k’ - @2/H, 

The solution to (37) is then 

h = Re(gexp(i(K.x-w’t)) 

and the complex a(mp1itude of h is 

- f i ( ~ . h ) - f i ( ~ . f i )  h =  - 
w’+ihKZ ’ 

where 

K2 = k‘2 - $H-2- ik’ . Z / H .  

(39) 

We see from (41) and (42) that the phase relationship between h and u, which is 
crucial in determining the mean a, is influenced by the effects of finite electrical 
conductivity and of stratification. We shall see presently that both effects together 
leave us with a finite a-effect in spite of the vanishing mean helicity. 

6. The a-tensor 

of induced field fluctuations (40) we calculate the mean electric field Cap according to 
For a superposition of waves as described by (33) and the associated superposition 
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Using the field variable U and relation (41), we may express this in terms of the 
spectrum tensor: 

We introduce the dimensionless number 

& = 145) 

which is the ratio of the time required by a sound wave to propagate over the distance 
2H to the diffusion time for a magnetic fluctuation of wavenumber (2H)-l. Then we 
use again the dimensionless frequencies and wavenumbers defined by (1  1)  and obtain 

We now use expressions (28) and (31) for the spectrum tensor and write the mean 
electric field in the form 

- 

The first factor of the denominator has been treated as in the corresponding formula 
for the helicity (36). The tensor in the numerator has been divided into its symmetric 
and anti-symmetric parts, a,, and cij, respectively; straightforward algebra leads to 

ai = - 2k, k, w&(k2 - 1 )  (Q . k) + [(k x 2)i k j  + (k x 2) k,] i rwz&(k2 - 1) 

- ( k i 2 j + k j 2 , ) 0 [ & ( k ~ -  1) (Qn.z )+[~+2Q(k .2 ) ]  (fi.k)} 
+ [( k x L),9j + (k x 2) 2i] i r w 2 [ w  + 2&(k. L ) ]  

- 22di$jw[~ + 2&(k. L ) ]  (Q .2) + (R, kj  + SZjk,) d & ( k 2  - 1) 

+ ( t2d9j + SZ j2i) w3[w + 2&(k. L)], (49) 

and cij = eijl.ljlu[(k x %)t + OQ] {(a. k) [o + 2&(k.2)] - &(k2 - 1)  ( 8 . 2 ) }  
+ kZw2{&(k2 - 1) (k. 2) - [W + 2&(k. 2)J (a2- I)> 
+ 2 [ ~ 2 { & ( k 2 -  1) (d-k2)- (k .2)  [ w +  2&(k.2)]}]. (50) 

The anti-symmetric part of the tensor connecting d and 6 (the 'a-tensor') can be 
written in the form 

cijl cl, (51) 

and C, is readily obtained from (48) and (50). This part is of little help in solving the 
dynamo problem: in the induction equation for the mean field, the vector C enters 
in the same form as the mean velocity, so C and (or) the mean field itself must be 
sufficiently asymmetric in order to overcome the classical antidynamo theorems, 
e.g. that of Cowling which excludes axi-symmetric or two-dimensional fields. Of 
course, the term would modify solutions of the mean field equation obtained with the 
help of the symmetric part, which we shall consider now. 
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First, we notice that in the case of no rotation the symmetric part vanishes, because 
the @ integral of (48) gives zero. If Q is large, i.e. the conductivity small, a,, vanishes 
at least as Q-1; some of its components vary as Q-2 for reasons of symmetry in k space, 
as we shall see presently. 

The integral (48)  depends on the directions Jz and 2. A general expression €or the 
a-tensor is therefore 

aij = a, Sij + a2Zi,bj + a3 Qi Qj + a4( RiZi + QjQ 

+ a,[(n x 2),9,. + (a x 2),4] + a J ( a  x 2)i Qi + (s2 x 2), !24] 

+ e&, + a, L18 + a,( s2 x 2)J. (52) 

The first term on the right-hand side constitutes a mean electric field in the direction 
of 6.  We may therefore identify a, with the a of Steenbeck et al. (1966). Since both 
2 and S2 have no x component, we have a1 = a,,, i.e., by (48) and (49), 

Q a, = - 
8njjc2H 

We cannot apply the same argument here which led us to conclude that the helicity 
is zero. For, if 8 and $ are replaced by (T - 8) and ( - $), the term 

w+2&k.2 = w + ~ Q ~ c o s ~  

in the denominator of (53) changes to w-2Qkcos8, i.e. the integrand is neither 
symmetric nor anti-symmetric under this transformation. The a-effect is therefore 
generally non-zero. It does however disappear in the limit of infinite conductivity, 
not only because of the factor Q in front of the integral (53), but also because the 
integrand turns anti-symmetric in this limit. For small Q ,  an expansion then shows 
that a1 a Q2; as already mentioned we have a, a Q-2 when Q 1, for an analogous 
reason. A number of results of such expansions will be presented in the following 
section. 

We have chosen to identify a1 with Steenbeck and Krause’s a because it represents 
an electric field parallel to 6.  We couId also set a = &aii, equally consistent with 
Steenbeck et aE.’s a (Moffatt 1978, p. 165). For vanishing Q, i.e. infinite conductivity, 
this a attains the finite value 

The fact that a finite a-tensor exists despite the vanishing helicity can be explained 
in the following way. The two waves of opposite helicity, which propagate into the 
(8, @) and (T - 8, - $) directions, induce fields such that their respective contributions 
to C do not cancel. This is essentially due to the effect of stratification; the two in- 
duced field waves have the same frequency, but, as can be seen from (41) with (39) 
and (42), they differ in their phase relationship relative to their inducing u-waves. 

We have so far assumed a constant mean magnetic field 6.  A spatially variableh 
could however substantially modify our result. In the following particular case, where 
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the Alfv6n velocity is constant, the a-effect is even zero. With h = Go exp ( z / 2 H )  we 
obtain instead of (40) and (41) the induced field 

h = Re [A exp i(k’ . x - w’t)] ,  

fi(k’.60)-ho(k.fi) 
= - o’+ihk’2 

The asymmetric part in the denominator of the a-tensor then vanishes. The same 
operations which led to expressions a, and a above now give 

n E ( k )  k4w[~ws in$cos$-2 (51 .k )cos2~]s in38dOd$dk  
[ h a -  (1 + k2)  w2- (k. (sL.2)2] (w2+ Q2k4) 

and 
n E ( k )  k%[(S2. k) (02- k2)  - (a. 2 )  (k. 2)] sin OdOd$ dk 

[2w4- (1 + k2)  w2 - (k.  - (a .2)2] (w2 + Q2k4) 
a =  

Both expressions are zero because of the anti-symmetry of the integrands; cf. the 
argument given in $ 4  above concerning the mean helicity (we thank a referee for 
drawing our attention to this case). A non-vanishing a-tensor is however obtained 
whenever the mean field is not proportional to exp(z/2H). In  particular, in cases 
where fi varies only on scales much larger than H our result (53) remainsapproximately 
valid. Some properties and consequences of this result are discussed in the following 
sections. 

7. Approximative results 
In  this section we shall present some results obtained in the limit of slow rotation, 

Q < 1. Moreover, we shall only consider the leading terms of the expansions of the 
a-tensor in terms of Q and Q-l, respectively. The a-tensor will be given for both 
acoustic and internal gravity waves, but the energy density spectrum will be assumed 
to have the form of a 6 function, i.e. 

where the normalization is such that u is the 1.111.9. velocity (after integrating over k‘, 
we drop the subscript p ) .  Since the resulting expressions are still rather complicated, 
we restrict ourselves further to the cases of very small and very large wavenumbers k. 
Only the acoustic waves in the limit of large conductivity, Q < 1, will be considered 
for all k. 

In  order to obtain the various approximations, WIlder (1978) has calculated the 
appropriate Taylor expansions of the frequencies and of the integrand of (48). We 
shall not repeat these lengthy calculations here, but summarize only the results. 
First the frequencies: the acoustic branches are, for k 1, 

(56)  

(57)  

1 N2(ik;  2)2) - r k .  (2 x In), 
2k2 

u K ~ =  & k + - -  ( 2k 
and, for k < 1, 

W K ~  = & [1+ +k2- +(S2.2)2- iN2(k x 2)’] - i rk .  (2 x a). 
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Acoustic waves 
7- Internal gravity waves 

k s l  k < l  k % l  
a1 I$- (t2.k) Qa - is6- (Q . 2) Qzk4 - f (Q . 2) Q2k4@ 
a2 (fra-2) ( ~ . i )  k-4 -2(Q.2) - (Q.2) Na8 

as hr(P.2) Qk-2 $r(P.i) Qka iI'(Q. 9) QkV 

a, i%Q - Q  QkaN28 
a8 --"(a . P )  (Q.2) Q (Q .i) Qk&(frz+ Na+:kaP) 

TABLE 1. Coefficients of the a-tensor, according to (52), for large conductivity, Q < 1; 
a factor u8 /2c  is to be added to all expressions 

a4 Bk-2 1 #N%S 

E r Q k - a  - 4rQk' - 3rQka& 

a 9  - +rk-2 r k 2  - ) r N 2 8  

Acoustic waves 

ksi k < l  

8 (A2.2) 
15 Q2k4 15 Qa 

h 
7- 1 

8 (Q.2) k4 --- -- 

1 -- I -- 
3Qka Q 

Internal gravity waves 
r------ 

8 (Q.2) k4 
15 Qa 
-- 

2(Q.2) 

2 ( N 2 -  1) ka 

3Q 

rka  

3Qa 
-- 

TABLE 2. Coefficients of the a-tensor, according to (52), for small conductivity, Q $- 1 ; 
a faotor u2/2c must be added throughout 

The internal gravity wave branches are, for k % 1, 

and, for k 4 1, 

u ~ f  = f [(a. 2)' + N2( k x i2)']+ + i r k .  (2 x a). (69) 
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FIGURE 4. The a,-effect of acoustic waves aa a function of wavenumber, 
for !2 Q 1 and Q < 1, according to  (60). 

The results for the a-tensor are given in form of the coefficients al, . . . , a9 defined 
by (52), in table 1 for the limit of large conductivity, Q < 1, and in table 2 for the 
small conductivity case, Q 4 1.  

The us term turns out to be of third order in the rotation rate and of second order 
in Q or Q-1, respectively, and is therefore not included in tables 1 and 2 .  Also, in 
table 1 we did not consider internal gravity waves of small wavenumber for the 
following reason: if both S2 and k are small, the frequency w of these waves, by (59), 
will approach zero and if, in addition, Q is small, the denominator of the fluctuating 
magnetic field amplitude (41) is also small, and the approximation of small fluctuations 
breaks down. For the same reason we restricted the large wavenumber internal gravity 
waves in table 1 to waves propagating almost horizontally, i.e. to small angles 
6 = &rr - 8. The frequency of these waves is then close to the Brunt-Vaisala fre- 
quency N .  

For acoustic waves and Q < 1, the coefficient a, has been computed by Witlder 
(1978) for all wavenumbers. She obtained 

where a = 2Nk/(  1 + k2). The approximative formulas of table 1 can be recovered 
from (60) by an expansion in terms of a, including orders up to a5. Figure 4 shows 
a, as a function of wavenumber. The change of the sign of a, at k = 1 occurs also for 
some of the other components of the a-tensor, as can be seen from tables 1 and 2 
in the various cases. 

8. A two-dimensional mean field : conclusions 
In  this section we shall investigate some of the consequences of the u-tensor derived 

in the preceding sections on the mean field. We are mainly interested in the differences 
from the case of a scalar u-effect, and shall therefore neglect the dependence of the 
a-tensor on cos 6, and p.  This is not consistent in principle; moreover, it  means that 
we neglect a variation of the mean field which we should have taken into account in 
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$ 5  5 and 6 where we derived the a-tensor in the first place. The following is neverthe- 
less added here in order to demonstrate differences which obtain from the tensorial 
form of a, and to make order of magnitude estimates concerning possible stellar 
dynamos. In  the case Ic $ 1, where the wavelength is short compared to the scale 
height of stratification, such estimates might indeed be sufficiently accurate. The mean 
field induction equation is, then, 

(e.g. Moffatt 1978, p. 202). In  analogy to the axi-symmetric mean field in the spherical 
case, we seek a field which is independent of the direction SL x 2, i.e. of the co-ordinate 
x. This field has the form 

fi = curl (A*) +B%, 

(A,  B) = (A,, B,) eim.r+nt. 

(62) 

(63) 

n is the growth rate (generally complex), and m the wave vector, which is perpen- 
dicular to 8. We insert (62) and (63) in (61) and obtain 

where 8 is a unit vector, and A and B have exponential form 

S 

"1 
[n + Am2+ iR - i(vp. m)] B, = -A, ,  

[ n  + Am2 - iR - i(vp. m)] A ,  = a,B,. (65) 

The vector vp = a, 2 + a8 SL is equivalent to a poloidal mean flow; we have also intro- 
duced 

(66) 

S = a~m2+a,a2[(mx8).2]2+2a,a4(mx%).2(mx~).SL. (67) 

R = a,(m x 8)  .2(0 x 2) .8+ a6(m x 8 ) .  ~ ( S L  x 2). 2, 

The term v, = a9S2 x 2, which is equivalent to a toroidal mean flow, does not occur 
in (64) and (65) since it is constant everywhere and thus does not affect a field which 
is independent of the direction vt. The condition for the existence of non-trivial 
solutions yields the growth rate 

n = - Am2 + i(vp. m) (S - P)*. (68) 

8- R2 > h2m4. (69) 

From (66) and (67) and tables 1 and 2 we see that R2 a R4 and S cc R2. Dynamo 
action appears therefore possible in the case of small R, because in an infinitely 
extended fluid (69) can always be satisfied if only the left-hand side is positive. In a 
finite geometry, however, m will be determined by the inverse of the length scale, 
and a more detailed consideration of the involved parameters, mainly R, &, and k, 
is necessary. In  any case it is clear from (64) and (65) that a, is the crucial link for a 
regenerative dynamo of the type described here. 

The mean field (63) has the form of a propagating wave, with frequency - (vp . m). 
Although the phase of such a wave propagates in all directionu except perpendicular 

For the upper sign we have dynamo action provided 
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to vp, its group velocity is simply - vp, which in the limit of small rotation is approxi- 
mately the vertical direction, upward or downward depending on the sign of a,. 

The ratio of the field components in the 2 direction and in the direction perpen- 
dicular to S is ~ B o ~ / m ~ A o ~ .  Using (68) we find from (64) and (65) 

a2[ (m x a) .  k]2 2a4 [(m x a) .  21 [(m x a).  a] +- -=-= 
a1m2 a1 m2 P o l 2  1 +  m2 1 AoI 2 m2a4 

For large conductivity, i.e. Q < 1, the results of table 1 indicate that u2/al and a4/al 
are both proportional to Q-$, so that the mean field is essentially in the x direction. 
On the other hand, for Q & 1, S/m2u, depends on k, but not on Q and Q, in the appro- 
ximative results of table 2; the two components of the mean field are then comparable 
in magnitude for internal gravity waves at large k, while we still have lBol $ mlAoI 
for the other cases. 

Can the waves discussed in this paper play a role in driving stellar dynamos? For 
the Sun, we may exclude internal gravity waves, since these can only exist where the 
stratification is stable, i.e. either below the convection zone or in the atmosphere 
itself. Certainly the latter is not the seat of the solar dynamo since observation shows 
that magnetic flux continuously emerges from the interior. On the other hand, a 
dynamo below, say, 2 x lo8 m, the depth of the convection zone in current solar 
models (e.g. Baker & TemesvBry 1966), poses problems because both the time scales 
of oscillation (e.g. Stix 1976) and of the emergence of magnetic flux to the surface 
(Parker 1975) would be much too long. 

Acoustic waves with periods around 5 min have been observed for many years in 
the solar atmosphere, and more recently it became clear that the origin of these waves 
must lie in the upper part of the convection zone (Ulrich 1970; Ando & Osaki 1975; 
Deubner 1975). There typical values of H and c are 500 km and 10 km/s, respectively 
(Baker & TemesvBry 1966), so that, by ( 1  l),  we have Q = 6 x Q is also small; 
we use a diffusivity A, w u,1/3, where u, and 1 are velocity and scale of the convection. 
(The use of a turbulent electromagnetic diffusivity in the present context really 
means that we have a ‘three-scale-picture’ in mind. On the smallest scale, we imagine 
isotropic, mirror-symmetric turbulence having the sole effect of a modified diffusion 
coefficient. Only at intermediate scales do the anisotropies introduced by rotation 
and stratification become important, leading to our a-tensor). With 1 = H ,  u, = lO3m/s 
(Baker & TemesvBry 1966), and the values already used we find, from (45), Q = 1.5 x 
10-2. Typical vertical wave lengths of the solar oscillations are a few thousand kilo- 
metres (Knolker 1978). Since there is a whole spectrum of waves, we cannot imme- 
diately use figure 4 in order to obtain a,; in particular, the sign reversal at  k = 1 
creates uncertainty. However, for an order of magnitude estimate it is sufficient to 
take a1 w 0.1Q2Qu2/c. The r.m.8. wave amplitude observed at the surface is a few 
hundred metres per second; the amplitude decreases inwards so that u = 100 m/s 
appears to be an optimistic estimate. With this we have a, w 1-4 x m/s. For 
a2 and a4 we are content with an even simpler estimate: we multiply a1 by Q-2 and 
obtain az w Qa, z 6 x m/s. In  order to see whether this is sufficient for dynamo 
action, we consider a mean field wave having a wavelength comparable to the 
solar radius. Then m w lo4 m-1 and S* w m(ala2)t z 10-14 s-l. On the other hand 
Am2 w 10-8 s-l. That is, dynamo action clearly does not occur. Even in co-operation 
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with non-uniform rotation a, appears to be far too small: For an ‘a,o-dynamo’, a2 
would be replaced by RAW, which on the Sun is approximately 100 m/s, still in- 
sufficient for dynamo instability. 

Of course the convective motions on the Sun themselves are strongly distorted by 
the effects of rotation, although the a-effect derived from these motions (Krause 1968; 
Yoshimura 1972) still rests on the first-order smoothing approximation in a case 
where it is not well justified. But the values of a obtained by this procedure are of 
order 1 ms-1 (e.g. Stix 1976), so it appears that the Sun, after all, does not need a 
wave-driven dynamo. Whether or not other stars can have a dynamo of the type 
discussed here largely depends on the presence of a turbulent convection zone. If 
there is none, the molecular conductivity has to be used. Q would then be very large 
and, accordingly, the a-tensor much too small (e.g. Deinzer 1976). If turbulence is 
present, and the rotation rate and wave amplitude are both larger, say, by a factor 
of 10 than the above-adopted values, a stellar a,@-dynamo might exist. Stellar oscil- 
lations with such an amplitude could be detectable with interferometric techniques 
(Traub, Mariska & Carleton 1978). Another possible field of application is waves in 
planetary interiors. 

We thank M. Knolker for assistance in the numerical calculations, which were 
carried out at the Univac 1108 of the Gesellschaft fur wissenschaftliche Datenver- 
arbeitung mbH, Gottingen, and C. J. Durrant for reamding the manuscript. 
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